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Abstract

High-Reynolds number flow over tree-like fractals is considered, with emphasis on the drag forces produced. Fractal
objects display large scale-disparity and complexity while being amenable to a simple and standardized description. Hence,
they offer an elegant idealization of the actual boundaries in practical applications where turbulence interacts with bound-
aries that are characterized by multiple length-scales. First, using large-eddy-simulation of flow over prefractal shapes with
increasing numbers of branch generations, the dependence of the tree drag on the inner cutoff-scale of the fractal is studied.
It is found that the convergence of the drag coefficient towards a value that is independent of inner cutoff-scale is very slow.
In order to address this fundamental difficulty and avoid the need to resolve all the small-scale branches of the fractal, a
new numerical modeling technique called renormalized numerical simulation (RNS) is introduced. RNS models the drag
of the unresolved branches using drag coefficients measured from both resolved branches and unresolved branches as mod-
eled in previous iterations of the procedure. The RNS technique and its convergence properties are tested by means of a
series of simulations using different levels of resolution. Then, RNS is used to investigate the influence of the tree fractal
dimension on the drag coefficient. The increase of the drag with fractal dimension is quantified for two types of tree geom-
etry, in two flow configurations. Results illustrate that RNS enables numerical modeling of physical processes associated
with fractal geometries using affordable computational resolution.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A fundamental challenge in studying flow in many natural systems, e.g., tree canopies [1], coral reefs [2,3],
respiratory branching networks [4–6], and soils [7], is the treatment of the wide range of length-scales involved
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in the fluid–boundary interactions. Many such physical systems with large-scale disparities, e.g., lungs, exhibit
fractal patterns [8] and therefore have scale-invariant properties. Thus, the study of transport across fractal
boundaries is a natural starting point in the study of transport across multi-scale boundaries in general. How-
ever, little is known about the transport properties, e.g., drag forces, associated with fractal boundaries in
high-Reynolds number (Re) flows.

A number of previous studies have considered harmonic fields in the vicinity of fractal boundaries [9,10]
and the associated diffusive transport rates [11,12]. In momentum transport, the low-Re hydrodynamic force
on a fractal surface composed of small amplitude sinusoids is known [13] to exhibit a broad multifractal spec-
trum. The scaling of the drag force and rate of dissipation, and whether these quantities diverge, has also been
investigated for certain classes of fractal surfaces in low-Re, low-amplitude oscillatory flows [14–16]. The low-
Re hydrodynamic properties of fractal aggregates have also been investigated [17,18]. At high-Re, fractal
objects inject energy into a flow over a range of scales, and the influence of this on their wake turbulence
has been studied experimentally [19,20]. There is also a large body of literature on modeling vegetation canopy
flow [21–23]. Although previous computational studies have not focused on high-Re flow over fractal bound-
aries, there are numerous techniques for dealing with effects of small-scale surface geometry, i.e., roughness
that is separated in scale from the ‘‘main’’ geometry of the flow. In high-Re simulations, the drag effect of such
unresolved geometric features (as well as canopy flows) can be taken into account by adding a momentum sink
(per unit volume) of the form
f ðxÞ ¼ � 1

2
qcDAðxÞj~uðxÞj~uðxÞ; ð1Þ
to the momentum equations. Here, cD is a drag coefficient, and A is a representative area (per unit volume).
This form of momentum sink has been used in a variety of studies where the roughness elements are com-
pletely unresolved [24–26]. A drag term representing the effect of unresolved terrain is investigated in [27].
In [28], an analogy with Large Eddy Simulations (LES) is made as the roughness is partially resolved. The
resolved part is represented using the immersed boundary method of [29], while the unresolved part is repre-
sented using a term similar to Eq. (1). The drag coefficient cD = 0.2 is prescribed, mainly to avoid numerical
stability issues they found to be associated with cD = 0.5 used by [25]. In each of the above studies, cD (or the
product cDA) was either tuned specifically for the flow under investigation, or it was prescribed in an ad hoc
fashion (e.g., to avoid numerical stability issues). This is analogous to the way in which the model coefficient is
prescribed in the classical Smagorinsky SGS model in LES, and similar limitations exist on the applicability of
a given cD to different flow configurations and flow regimes. In light of this, a technique that could be used to
determine cD in a less ad hoc fashion is desirable.

A number of techniques have been developed to treat multi-scale problems with scale-invariant properties.
The approach used in renormalization group theory [30–32] to tackle problems with a wide range of scales is
to solve a simplified version of the problem at small scales, and then calculate the aggregate effect of the small
scales on the large scales. In the remaining large-scale problem, the effects of the small scales appear as effective
(renormalized) coefficients. This process of learning from solvable small-scale problems to predict large-scale
effective properties is termed ‘‘up-scaling’’. On the other hand, ‘‘down-scaling’’ approaches, where large-scales
are used to model small-scale properties, have also been effective in areas such as large-eddy simulation (LES)
of turbulent flows. In the dynamic subgrid-scale (SGS) model, resolved-scale information is used to help deter-
mine SGS eddy diffusion coefficients [33–35]. Resolved-scale velocity fields have also been used to develop SGS
models based on synthetic velocity fields generated using fractal interpolation [36,37].

With the increases in available computing capacity, it is now possible to consider numerical investigations
of flow over fractal surfaces. Modeling techniques designed to take advantage of scale-invariance will aid in
simulations of these computationally expensive problems for applications, e.g., environmental flows. Here, we
numerically study the drag force exerted by a three-dimensional, very high-Re number, turbulent flow on ide-
alized fractal trees. To simplify, the direct effect of molecular viscosity is neglected. The detailed flow config-
uration envisioned in this study is described in Section 2. Then, in Section 3, we present a series of LES where
an increasing number of branches of the tree are explicitly resolved on the computational mesh. The drag
coefficient is obtained as a function of the number of branch generations. The results of this study reveal that
the convergence towards an asymptotic drag coefficient is extremely slow and that achieving the asymptotic



Y

Z

low
F

B = 3 , a n d t h e s c a l e r a t i o b e t w e e n

s u c c e s s i v e b r a n c h g e n e r a t i o n s i s

r = 1 / 2 .

S . C h e s t e r e t a l . / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 2 5 ( 2 0 0 7 ) 4 2 7 – 4 4 8

4 2 9
value would require an impractically large number of branch generations to be resolved in a simulation. Thus,
a new method, called renormalized numerical simulation (RNS), is developed in Section 4. RNS takes advan-
tage of scale-invariance in the problem to model the forces on the fluid due to the smallest branches, which
cannot be resolved, in a recursive manner. The technique is tested and then applied to predict the drag
coefficient as a function of tree fractal dimension and type of fractal tree. Discussion and conclusions are
presented in Section 5.

2. Flow configuration

The flow considered in this study is turbulent flow over fractal trees. For the later convenience of using
spanwise periodic boundary conditions, the trees are arranged as a single spanwise row placed on a horizontal
surface, perpendicular to the flow. The case of many rows (i.e., a lattice) of trees is also considered later, in
Section 4.4. For simplicity, we consider trees where the fractal construction is confined to a plane perpendic-
ular to the main flow direction, and we assume the trunk and branches have square cross-sections. The trees
are assumed to lie entirely within a turbulent boundary layer developed by the shear from the horizontal sur-
face on which the trees stand. The focus of the present paper is not on turbulence structure created in an actual
vegetation canopy. Instead, the focus is on development of techniques to compute drag forces on multi-scale
objects. The idealized geometry we consider offers computational and analytical simplifications while preserv-
ing essential features of multi-scale boundaries, as a stepping-stone towards simulation of realistic canopy
flow.

2.1. Tree geometry

A schematic of the highly idealized tree geometry is shown in Fig. 1. The mean flow is assumed to be along
the x-direction, and the trees are spaced a distance L apart from each other in the (spanwise) y-direction. The
plane z = 0 defines the horizontal surface, or ground, upon which the trees stand. The overall aim of this study
is to predict the drag forces that the trees apply to the fluid flowing over them. It is assumed that the flow Re is
so large that the direct effects of viscosity may be neglected in calculation of the drag forces on the trees. In
reality, at any fixed Re, there will always be some smallest-scale branch generation at which the local Re

becomes small and viscosity begins to play an important role. In this initial study, attention is restricted to
the limiting case where even the flow over the very small-scale branches is dominated by inertia effects.

Each tree has multiple generations of branches, with generation 0 being the trunk. To each branch at each
generation, NB smaller branches representing the next generation are attached. To simplify, the branches are
square cylinders and all the branches at a given generation have the same size. It is assumed that the trees are
self-similar, so that a constant scale ratio r < 1 exists between successive branch generations, i.e., the length lg
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and diameter dg of a branch at generation g P 0 are related to those at generation g + 1 by lg+1 = rlg and
dg+1 = rdg. The tree geometry can be described by specifying the trunk shape and an iterated function system
[38] (IFS) {wi(x): i = 0, . . ., NB � 1}, with each wi describing how to map the trunk T to its ith sub-branch. A
branch b at generation g can be represented as b ¼ wbg � � � � � wb1

ðT Þ, with each bj in the range 0, . . . ,NB � 1. It
is assumed that each function in the IFS is invertible, and that the branches are non-overlapping.

In the geometry shown in Fig. 1, which is the test case in Sections 3 and 4.3, each branch has NB = 3 sub-
branches and the scale ratio is r = 1/2. The similarity fractal dimension [8] is D = logNB/log r�1 � 1.58. The
tree trunk is a square cylinder with diameter (square-edge) d0 = L/8 and height l0 = 3L/8. An IFS that
describes this tree geometry, relative to coordinates with origin at the base of the trunk, x-axis aligned with
the mean flow, and z-axis aligned with the (vertical) trunk axis, is
wiðxÞ ¼ rRixþ si: ð2Þ

In this expression, R0 = Rx(p/2), R1 = Rx(0), R2 = Rx(�p/2), Rx(h) denotes a rotation matrix that rotates
through angle h about the x-axis (in a right-handed sense), s0 = (0, �d0/2, l0 � d0/2), s1 = (0, 0, l0), and
s2 = (0, d0/2, l0 � d0/2).

2.2. A priori drag estimate

As a global measure of the total tree drag, the time-averaged effective total drag coefficient CT for the entire
domain is used. It is defined as CT ¼ F T=

1
2
qU 2A

� �
, where F T is the time-averaged total x-direction drag force

the fluid applies on the tree, U is the mean streamwise velocity in the domain, and A = L2 is the total frontal
area of the domain.

A first, highly approximate, estimate of the drag coefficient CðindÞ
T ðgÞ of the tree with g generations of

branches is obtained by treating the tree as a superposition of independent square cylinders, each in a uniform
flow U, and neglecting end-effects as well as interactions among branches of the same and different generations
(e.g., screening). Summing the resulting finite geometric series leads to the estimate
CðindÞ
T ðgÞ ¼ Csq

l0d0

L2

1� ðNBr2Þgþ1

1� NBr2
; ð3Þ
where Csq � 2.1 is the usual square-cylinder drag coefficient [39], and it is assumed that NBr2 < 1 (i.e., D < 2)
so that the expression converges as g!1. For the tree in Fig. 1, this estimate yields CðindÞ

T ðg!1Þ � 0:39.
The applicability of Eq. (3) to the current flow is limited by the presence of the lower wall (causing the incom-
ing log-profile), the dependence of the flow field felt by a given branch on the presence of the other branches,
and the inflow turbulence (which may alter the effective Csq). In the following section, CT(g) is obtained
numerically using LES for different generations g = 0, 1, 2 and 3.

3. Branch-resolved simulation

In this section, turbulent flow over finite-generation (i.e., prefractal) approximations to the trees described
in Section 2 is simulated. These simulations use only tree geometries that can be directly represented, i.e.,
resolved, and the effects of unresolved branches are entirely neglected. These simulations are referred to as
branch-resolved simulations (BRS). However, the flow itself is turbulent and all the scales of motion cannot
be resolved, so the LES technique is used to account for unresolved motion of the fluid. The purpose is to
demonstrate the computational difficulty of this multi-scale flow problem and the need to account for unre-
solved geometry using a new model.

3.1. Simulation methods

The LES technique is used to simulate the high-Re turbulence in the flow surrounding the solid trees. All
simulations use the Smagorinsky SGS model [40,41] (the coefficient used is cS = 0.16), with a standard wall-
damping function to decrease the coefficient near walls and tree surfaces (the damping function of Ref. [42] is
used, with n = 2). More advanced SGS closures, such as scale-dependent dynamic models [43,44], have also
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been used in some of our simulations. Overall, the results are similar, but not exactly the same. In order to
focus this study on the drag forces generated by the fractal boundary and not on the subgrid modeling of
the turbulence in the bulk flow, all results presented in this paper use the traditional non-dynamic Smagorin-
sky model with wall damping, as described above. The molecular viscosity is neglected, consistent with the
assumption of very high-Re flow.

The incompressible LES equations are solved using a numerical algorithm that has been described in pre-
vious studies [45]. It uses pseudospectral discretization for horizontal (x,y)-planes and second-order centered
finite difference discretization in the vertical z-direction. The application of the LES grid filter (denoted by a
tilde) is implicit, i.e., no explicit grid filtering operation is performed during the simulations. The immersed
boundary method [46–49] is used to add effects of the resolved parts of the trees by forcing the velocity inside
them to zero. The second-order Adams–Bashforth time advancement can be written in two stages as
~u� ¼ ~un þ ð3Dt=2Þ½ð~u� ~xÞn �r � sn� � ðDt=2Þ½ð~u� ~xÞn�1 �r � sn�1 �r/n�1�; ð4Þ
~unþ1 ¼ ~u� þ Dtðrn=q� 3r/n=2Þ; ð5Þ
where ~u is the filtered velocity, ~u� is an intermediate velocity, ~x is the filtered vorticity, s is the SGS stress ten-
sor, and / ¼ ð~p=qþ j~uj2=2Þ is related to the filtered pressure ~p, q is the fluid density, r is the immersed bound-
ary force (defined per unit volume, for later convenience), and Dt is the time increment. The superscripts n and
n + 1 denote the time step associated with each quantity. The variable /n is determined by solving the Poisson
equation obtained by taking the divergence of Eq. (5) and assuming r � ~unþ1 ¼ r � rn ¼ 0.

A signed distance function u is used to keep track of the points inside the resolved parts of the trees (u 6 0)
where the immersed boundary forcing will be applied, and the fluid points (u > 0). The immersed boundary
force only acts on points inside or on the surface of resolved branches and drives the fluid velocity to zero at
these points:
rnðxÞ ¼
qð3r/n=2� ~u�=DtÞ : uðxÞ 6 0

0 : uðxÞ > 0

�
: ð6Þ
Since the LES presented in this study are not wall-resolving, a wall model is required to represent the drag that
the resolved tree surface applies to the fluid flowing past it. There exists presently no accurate wall model
applicable for general geometries. Therefore, we will follow the default standard approach [50] to simply
use a wall model developed for flat walls [42]. In following this approach, we apply a stress at the resolved
tree surfaces consistent with a log-law velocity profile near these surfaces (described in detail below). It is clear
that in flows where the skin friction is important, improvements can be made by using more complex wall
models. In our simulations, however, the skin-friction-like effects caused by wall roughness z0 are small com-
pared to the form drag, and so the error incurred by using our simple wall model is not large. In fact, these
errors are shown to be small by the favorable comparison with experiment for the square cylinder flow pre-
sented in Appendix A. The approach is to modify the SGS stress s at points inside and in the vicinity of IB.
This is done in three steps, which are illustrated in Fig. 2.

Step 1. Specify the stress at any point x in the band 0 6 u(x) 6 d, i.e., any point outside but within distance
d of the IB, including points on the IB itself. Let n̂ ¼ ru denote an approximate surface normal passing
through x (note j$uj = 1 for a signed distance function). Let v denote the fluid velocity at a distance d from
the immersed boundary along the line passing through x and parallel to n̂. We use d/h = 1.1, where h is the
mesh spacing (assumed equal in all three Cartesian directions). Then v and n̂ define a local coordinate system
with origin at x and directions e01 ¼ v̂t, e02 ¼ n̂� v̂t, and e03 ¼ n̂, where vt ¼ v� ðv � n̂Þn̂ is the tangential part of v.
In these coordinates, the tangential velocity magnitude is assumed to have an instantaneous, rough-wall log-
law profile at distances from the wall less than d, so the local wall shear stress is related to v by
sw ¼ �q½jjvtj= lnð1þ d=z0Þ�2; ð7Þ
where z0 is the roughness length of the IB surface, j = 0.4 is the von Kármán constant, and the minus sign is
for consistency with the SGS stress sign convention. The tree surface roughness length z0 represents a skin-
friction-like drag on the flow caused by the small-scale surface roughness of the tree (e.g., bark). The primary
motivation for introducing a small-scale surface roughness z0 is that the log-profile used in our wall model



Fig. 2. Schematic showing the three steps in the immersed boundary treatment. Here, x(1) denotes a point in the band of thickness d
(=1.1h) in which sw is used to calculate the shear stress components s013 ¼ s031 in Step 1. The point x(2) denotes a point where the stress is
obtained by extrapolation during Step 2. Finally, x(3) is a point where the stress is calculated by performing a Laplacian smoothing in the
pseudospectral (x, y)-planes during Step 3.
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Eq. (7) becomes Reynolds number independent. This independence ensures that the boundary conditions are
well defined in the limit of very high Reynolds number considered in this work. Even though x may not be
exactly on the wall itself, the shear stress sw is taken to represent the stress components s013ðxÞ ¼ s031ðxÞ,
and all other components of the stress tensor in the representation referred to the rotated coordinates
ðx01; x02; x03Þ are assumed to be zero. Specifically, s0ijðxÞ ¼ swðdi1dj3 þ di3dj1Þ. The use of a constant sw region
of width d (on the order of h) implies that this IB method ‘‘smears’’ the variables over lengths-scales compa-
rable to the grid scale [48]. Finally, this stress tensor representation in the local coordinate system is trans-
formed (rotated) to the global (x1, x2, x3) (or (x, y, z)) coordinate system to set components of the stress
tensor s(x) used in the discretized LES equations. The tensor rotation is carried out using
sijðxÞ ¼ aimajns0mnðxÞ, where the aij are the direction cosines between the global xi-axis and the rotated x0j-axis.
The underlying assumption in choosing d is that the velocity profile may be approximated by a log-law at dis-
tances less than d from the wall. In cases where the logarithmic region of a boundary layer thickness is smaller
than our choice 1.1h, or where no logarithmic region exists, the approximation may introduce errors if skin-
friction is important. However, as pointed out above, skin friction is not of primary importance for the geom-
etries considered here (as shown in Appendix A), since pressure drag is the dominant source of drag on the
square-cylinder branch elements.

Step 2. Extrapolate to obtain stresses at any point x in the band �d 6 u < 0 just inside the IB by using the
surrounding stresses outside the IB. Starting at x, a step of size � is taken along the normal n̂ to define a point
in the fluid n1 ¼ xþ �n̂. Initially � = h is used, but if this choice results in u(n1) < 0, then � = 1.5h is used
instead. A second fluid point along the normal is n2 ¼ xþ 2�n̂. The stress tensor is interpolated to get s(n1)
and s(n2) using neighboring fluid points. The stress tensor s(x) is extrapolated from these two fluid points into
the solid region using s(x) = 2s(n1) � s(n2).

Step 3. The last step is a stress-smoothing step that acts only on stresses further inside the IB, at any point x
with u(x) < �d. The stress field at these points is set by performing five successive overrelaxation (SOR) iter-
ations [51] of the Laplace equation in s on (x, y)-planes to obtain a smooth stress field that is amenable to the
spectral differentiation used in these planes and blends smoothly with the stresses at points close the IB (from
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the second step, above). Specifically, the stress at a point xi,j,k on the grid with u(xi,j,k) < �d is calculated by
performing the following update five times:
smþ1
i;j;k ¼ ð1� xSORÞsm

i;j;k þ xSORðsm
i�1;j;k þ sm

iþ1;j;k þ sm
i;j�1;k þ sm

i;jþ1;kÞ=4; ð8Þ
where m keeps track of the iteration number (it is not related a physical time advancement), and the SOR
parameter xSOR = 1.5 is used to accelerate the convergence. Tests show that the results are insensitive to
increasing the number of SOR iterations performed.

Tests outlined in Appendix A show that the forces on an square cylinder with diameter to mesh ratio
d/h = 8 can be accurately calculated using this approach. For the purpose of measuring forces, any branches
with cross-section edge at least 8h in length are said to be resolved in this paper. The roughness length used in
the log-law for the bottom wall and resolved tree surface is z0 = 10�4L. The effect of z0 on the tree surfaces is
small for the tree geometries used in the manuscript, since they are all constructed from square cylinders with
sharp corners. With this geometry, pressure drag provides the overwhelming contribution to the total drag.
This is verified in tests using flow over an isolated square cylinder, presented in Appendix A, which show that
the effect of z0 is small.

The simulation domain is a box defined by {(x, y, z): �1/2 6 x/L 6 3/2, �1/2 6 y/L 6 1/2, 0 6 z/L 6 1},
with a tree based at (x, y, z) = (0, 0, 0) on the bottom wall. The top of the domain (z = L) is treated as a
stress-free, impenetrable boundary, and periodic boundary conditions are applied at the sides of the domain
(y = ±L/2) to mimic the effect of an infinite row of trees. At the x = �L/2 plane, the time-varying velocity field
from a precursor simulation of a fully-developed turbulent boundary layer is imposed. It uses the same equi-
librium wall-layer boundary condition at the bottom surface and the stress-free boundary condition at the top.
In the precursor simulations, no tree is present and flow is forced through the domain parallel to the x-axis by
applying a constant mean pressure gradient forcing fp ¼ �d�p=dx > 0 per unit volume, where �p is the mean
pressure. All flow variables are non-dimensionalized by q, L, and fp, resulting in a time scale s = (Lq/fp)1/2

and a velocity scale u* = (L fp/q)1/2 (the mean friction velocity). These same scales are used to non-dimension-
alize the flow variables in the simulations with the trees. In the main simulation domain, one quarter of the
domain, 1 6 x/L 6 3/2, is used as a fringe region [52,53] to force the velocity field back to its x = �L/2 value,
which allows us to simulate non-periodic flow in the x-direction using pseudospectral numerics. Specifically,
for 1 6 x/L 6 3/2, the velocity is imposed according to ~uðx; y; zÞ ¼ ~uðL; y; zÞð1� wðxÞÞ þ ~upðy; zÞwðxÞ, with
wðxÞ ¼ 1

2
½1� cosðpð2x=L� 2ÞÞ�, where ~upðy; zÞ is the velocity from the precursor simulation at a fixed stream-

wise location. This way, we obtain the inlet velocity ~uð�L=2; y; zÞ ¼ ~upðy; zÞ at every time step. Note that within
the fringe region, this velocity has non-zero divergence. The use of a code with pseudospectral numerics in the
horizontal directions along with our IB implementation and our fringe forcing technique results in a degrada-
tion of the spectral accuracy there. Due to the complex interplay of errors introduced by the two techniques,
and since the code’s accuracy in the bulk of the flow is not the primary objective of this paper, we refrain from
attempting a rigorous analysis of the code’s accuracy.

3.2. Results

A series of four BRS, using g = 0, 1, 2, 3 was performed, each using using 512 · 256 · 256 computational
grid points. Snapshots of the resulting velocity fields are shown in Fig. 3(a)–(d). The g = 3 simulation is under-
resolved since the smallest branches are only 4h in diameter, so this simulation is included only to indicate a
possible trend with the understanding that there could be some error in the results.

The resulting drag coefficients CT from this series of BRS are summarized in Fig. 4. As expected, there is an
increase in CT associated with each generation of branches that is added. Plotted in log-scale, it appears that
the sequence of CT values would converge for g large enough, but this limiting value cannot be determined
from these simulations without incurring uncontrolled extrapolation errors. The dependence of CT on g devi-
ates from that in Eq. (3) and indicates that higher values of g than those simulated here are required to dem-
onstrate convergence of CT. The relatively low values of CT measured from these low-g tests compared to the
simple estimate CðindÞ

T ðg!1Þ above also indicate much larger values of g are necessary to achieve conver-
gence to the asymptotic value.



Fig. 3. Resolved tree geometry and instantaneous streamwise (x) velocity-field slices from 512 · 256 · 256 BRS that resolve the trunk and
g generations of sub-branches: (a) g = 0, (b) g = 1, (c) g = 2, and (d) g = 3. The bottom surface shows the instantaneous wall shear stress.
To illustrate the wake structure, the (x,z)-planes in (b) and (d) are chosen so that they cut through the tree and the wake it produces.
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Fig. 4. Total drag coefficient CT versus number of branch generations g from 512 · 256 · 256 BRS (squares), BRS with the geometry
augmented by plates (diamonds), and a priori estimate (dashed line). The long-dashed line shows the result to be described in Section 4.2,
obtained via RNS.
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To place an upper bound on the limiting value of CT(g!1), a different set of simulations is performed. In
these simulations, the asymptotic fractal tree is approached from a construction in which all branches smaller
than generation g branches are represented by solid ‘‘plates’’, as shown in Fig. 5. Simulations were performed



Fig. 5. Instantaneous velocity from simulation with g = 2, augmented by plates. The bottom surface shows the instantaneous wall shear
stress.
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for g = 0, 1 and 2 using this solid-plate representation of the sub-grid branches. The solid diamond-shape
plates have thickness equal to the diameter of the next generation (g + 1) branches. The same immersed
boundary implementation described in Section 3.1 is used to impose equilibrium log-law and no penetration
boundary conditions. In the limit g!1, geometrically speaking, the tree tends to a situation very similar to
that shown in Fig. 1, with some possible subtle differences at the very smallest scales where the solid-plate
geometry will contain a connected border line, whereas the original construction consists of disjoint points
that tend towards each other along this border line. As can be seen in Fig. 4, where diamonds show the result-
ing drag coefficients as a function of g, the resulting drag coefficient indeed falls above the ones from the earlier
approach. The results are consistent with a tendency towards a common asymptotic value, but it is not pos-
sible to conclude this with any degree of certainty from these finite-size simulations.

These results highlight the need for a methodology to model the effects of unresolved branches and avoid
resolving all the branches explicitly. Such a technique is proposed in the next section.

4. Renormalized numerical simulation (RNS)

RNS is an inverse-renormalization, down-scaling strategy. It solves the large-scale problem via numerical
simulation while simultaneously learning from this simulation how to model the small-scale problem. This
information about the small-scale problem is repeatedly fed back into the simulation of the large-scale prob-
lem, as it progresses in time, to achieve a simulation in which the effects of many small scales are well-repre-
sented even though they are not explicitly calculated. Dimensional analysis is applied to the resolved-scale
features of a simulation, effectively down-scaling (shrinking) the quantities of physical interest so that they
may be used to model the unresolved scales.

4.1. Formulation

Since the flow and tree interact through pressure and viscous forces that develop at the tree boundary, the
effects of the tree on the flow may be viewed as the result of application of a force field f(x) to the fluid, which is
taken to be defined per unit volume. This concept of representing a solid body in a fluid only by the force it
applies to the fluid is the basis of immersed boundary methods [46–49]. In the present study, RNS requires that
the trees be partially resolved, i.e., some branches are large enough to be represented directly in a numerical
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simulation, without a parameterization. Since in the present application the immersed boundary method is
used to represent the resolved branches, the immersed boundary force field r(x) (without the time index,
for convenience) is known in the interior of the trunk and resolved branches of the simulation. From this point
on, let the last such resolved branch generation be denoted by g. The total force field implied by the full tree
object is written as
Fig. 6.
shown
f ðxÞ ¼ rðxÞ þ
X

b

fbðxÞ; ð9Þ
where the sum is over all unresolved branches b at generation g + 1, and fb(x) is a force field representing ef-
fects of these branches and all higher-generation descendants of the fractal attached to them. The sketch in
Fig. 6 illustrates these variables. These force fields are defined such that they vanish outside the object they
represent, e.g., r(x) = 0 for x falling outside the resolved trunk or branches, and fb(x) = 0 for x falling outside
the region covered by the branch b and its descendants (although on a finite computational mesh, this can only
be approximately enforced, see Eq. (16)).

The methodology distinguishes between the distributed force fields applied by a given branch plus its
descendants (e.g., fb(x)) and the total force applied by this branch and its descendants,
Fb ¼
Z

fbðxÞd3x: ð10Þ
Equivalently, for generation g the total force due to a branch b and its descendants is given by
Fb ¼
Z

rbðxÞ þ
X

b2subðbÞ
fbðxÞ

" #
d3x; ð11Þ
where rb is the immersed boundary force field due to b, and sub(b) is the set of generation-(g + 1) sub-branches
attached to b, i.e., fwbg � � � � � wb1

� wiðT Þ : i ¼ 0; . . . ;N B � 1g.
The difficulty, and primary focus of RNS, is the determination of the force fields fb(x) at positions corre-

sponding to the unresolved branches at generations g + 1 and above. The essential feature of RNS is to relate
the total force Fb on the fluid due to branch b and its descendants to the total force due to the generation g

branch b ¼ w�1
j ðbÞ and its descendants (and possibly other identical branches based at generation g).

At time step n, the total force Fn
b is modeled using a drag law of the form
Fn
b ¼ �cn

Dðg þ 1Þ q
2
jVn

bjVn
bAb; ð12Þ
Schematic diagram illustrating variables for RNS procedure for the case NB = 3, g = 1. The smoothed indicator function �vb is
for the branch b = w2 � w1(T).
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where cn
Dðg þ 1Þ is the drag coefficient of b (and its descendants), Vn

b is the spatially averaged velocity vector in
a region Rb in the general neighborhood of b and its descendants, and Ab = ld/(1 � NBr2) is the projected area
of branch b and its descendants as seen by the oncoming mean flow. We choose Rb to be the volume upstream
of the branch, containing fluid that will hypothetically come into contact with the resolved and unresolved
branch region. In this application, Rb is an upstream diamond shape as shown in Fig. 7. If written for the
trunk generation, the upstream diamond shape is given by RT = {(x, y, z): �W/4 6 x 6 0, jyj + jz � l0j
6W/2}, where W = d0 + 2rl0/(1 � r). As documented in detail in Appendix B, other choices of Rb can influ-
ence the validity of key assumptions to be made below. The model in Eq. (12) assumes the direction of the
force Fn

b to be opposite that of the velocity Vn
b, and neglects components of the force in other directions. How-

ever, the proposed methodology can be generalized to deal with other force components, e.g., lift and axial
forces.

The drag coefficient cn
Dðg þ 1Þ in Eq. (12) is unknown because of the complexity of the flow around the

branches, but in incompressible flow, cn
Dðg þ 1Þ can depend only on Re and non-dimensional parameters

describing the flow geometry. Here, we assume Re is high enough that cn
Dðg þ 1Þ is Re-independent. (Using

square cross-section branches provides a firm basis for this assumption, since the drag coefficient of an isolated
square cylinder in incompressible flow is essentially Re-independent for Re > 2 · 104 [54].) This leaves only
non-dimensional combinations of flow geometry parameters as possible variables on which the drag coefficient
depends.

Since the tree geometry is self-similar, many of these non-dimensional geometric parameters will be the
same (or nearly so) for different branch groups, even if the branch groups are based at different generations.
In the present application, all branches at a given generation are identical and orthogonal to the incoming
flow, so coefficients cn

Dðg þ 1Þ corresponding to different branch groups based at generation g + 1 are assumed
to be equal, i.e., we neglect the dependence of cn

Dðg þ 1Þ on the orientation of the branch group within the
plane perpendicular to the incoming flow.

If there exists dependence of cn
Dðg þ 1Þ on g (i.e., scale-dependence) it would arise through non-dimen-

sional geometric parameters that are different for branches at different generations. An example is the pos-
sible dependence of cD upon the detailed shape of the local velocity profile impinging on the branches (not
just the mean velocity), which can depend on the position of the branches within the domain (and hence
scale), e.g., through the height above the lower wall. As shown in Appendix B, the importance of the scale
dependence on this local velocity can be made small by the choice of an appropriate local velocity
averaging region Rb. As an approximation in this first application of RNS, we neglect these scale-
dependent geometrical dependencies, and assume that cn

Dðg þ 1Þ is independent of g, i.e., scale-independent.
β

Flow

Rβ

Fig. 7. Upstream diamond box used to specify the region of velocity averaging Rb in the definition of Vb.



438 S. Chester et al. / Journal of Computational Physics 225 (2007) 427–448
Consequently, cn
Dðg þ 1Þ can be measured from the branches at generation g. With the above assumptions,

the problem is reduced to that of determining a single drag coefficient cn
DðgÞ that is to be measured using

information from branches at generation g and is then to be applied to parameterize branches at genera-
tion g + 1.

To measure cn
DðgÞ, the model in Eq. (12) is applied to a generation-g branch b: Fn

b ¼ �cn
DðgÞqjVn

bjVn
bAb=2.

This acts as a constraint on cn
DðgÞ, since another estimate for Fn

b is available from Eq. (11). From Eq. (11), we
see that Fn

b includes both the resolved force due to branch b as well as the modeled forces from its unresolved
descendants. The latter are calculated using the value of cn�1

D ðg þ 1Þ that is known from the previous step of
this iterative procedure. To make this dependence explicit, we write Fn

b ¼ Fn
bðcn�1

D Þ. Specifically, the integrated
form of Eq. (11) is used as
Fn
bðcn�1

D Þ ¼ Rn
b �

X
b2subðbÞ

cn�1
D ðg þ 1Þ q

2
jVn

bjVn
bAb; ð13Þ
where Rb is the total resolved force due to b.
Since for g P 1 there will be more than one resolved branch b at generation g, and also since Fn

b and Vn
b

need not be collinear, a least-squares approach is used to determine cD(g). This involves minimizing the total
square error e from all (resolved) branches at generation g and force vector components:
e ¼
X

genðbÞ¼g

Fn
bðcn�1

D Þ þ cn
DðgÞ

q
2
jVn

bjVn
bAb

h i2

: ð14Þ
The summation range gen(b) = g signifies that the sum includes every branch b at the last resolved generation
g. Solving for the unknown average drag coefficient yields
cn
DðgÞ ¼ �

2
P

genðbÞ¼g½F
n
bðcn�1

D Þ � Vn
b�jVn

bjAbP
genðbÞ¼gqjV

n
bj

4A2
b

: ð15Þ
This value of cn
DðgÞ determined here at generation g is used in determining the magnitude of the forces Fn

b rep-
resenting branches of generation g + 1 and higher by assuming scale-invariance, i.e., cn

Dðg þ 1Þ ¼ cn
DðgÞ. By

iteratively calculating cn
DðgÞ (in time), the force due to a large number of unresolved branch generations

can be argued to have been included. The iterations in Eq. (15) at the start of a simulation are initialized using
c0

Dðg þ 1Þ ¼ 0. With the drag coefficient cn
Dðg þ 1Þ we may determine the total force on the flow due to an unre-

solved branch b and its descendants.
We now turn to the issue of how to distribute this force on the computational mesh. Maintaining the iner-

tial scaling of forces, we assume the force on the fluid at point x due to unresolved branches depends quadrat-
ically on the local velocity (and opposes it):
f n
bðxÞ ¼ �kn

bj~unðxÞj~unðxÞ�vbðxÞ; ð16Þ
where kn
b is a dimensional coefficient to be determined later, and where �vb is a smoothed version of the branch

indicator function vb. In principle, this indicator function is 1 inside b and its descendants, and is 0 elsewhere.
Since this cannot be represented on the finite grid, it is spatially filtered using a truncated Gaussian filter with
filter radius 2h and truncation radius 4h (where h is the mesh spacing) to smooth it before sampling it on the
mesh. Tests using different widths of this filter show the overall results to be insensitive to this choice of filter-
scale. The filtered indicator function �vb is calculated by filtering an isolated copy of vb. This is done so that
there is no cross-talk between branch b (and its descendants) and another nearby branch b 0 (and its descdents)
during the filtering of vb which could lead to portions of b 0 showing up in �vb. With this procedure forces from
separate branches may be superimposed as in Eq. (9) without double-counting. What remains to be done is to
relate the unknown (dimensional) coefficient kn

b to the overall drag coefficient cn
Dðg þ 1Þ such that the total gi-

ven force from the distributed force of Eq. (16) equals the total force as implied by Eq. (12). Substitution yields
the expression
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kn
b

Z
j~unðxÞj~unðxÞ�vbðxÞd3x� cn

Dðg þ 1Þ q
2
jVn

bjVn
bAb ¼ 0; ð17Þ
where cn
Dðg þ 1Þ ¼ cn

DðgÞ is assumed to be known from Eq. (15). Since the above vector equation for scalar kn
b

is over-determined, again a least-squares error approach is used, leading to
kn
b ¼ cn

Dðg þ 1Þ
ðqjVn

bjVn
bAb=2Þ � I n

b

jIn
bj

2
; ð18Þ
where Z

In

b ¼ j~unðxÞj~unðxÞ�vbðxÞd3x: ð19Þ
The force f n
bðxÞ thus represents structural information about the unresolved forces at scales between the size of

Rb, all the way down to the grid scale h. Spatial information about scales finer than the grid resolution is not
directly represented using the coarse grid. Instead, forces due to these scales are taken into account only
through cn

Dðg þ 1Þ, which spreads their influence out over the (discrete) support of �vb for branches b at gen-
eration g + 1.

To apply Eq. (16), each branch b at generation g + 1 is considered one at a time. All points x near branch b
and its descendants are considered and the indicator function �vbðxÞ is calculated using a branch-local coordi-
nate system. If b ¼ wbgþ1

� � � � � wb1
ðT Þ, the IFS is used to define the origin of the branch-local coordinate sys-

tem as Ob ¼ wbgþ1
� � � � � wb1

ðOÞ, with O = (0, 0, 0) denoting the origin of the global coordinates. The local
coordinate unit vectors ej,b for j = 1, 2, 3 are defined in the directions of wbgþ1

� � � � � wb1
ðejÞ �Ob, where ej

is the unit vector in the xj direction in the global coordinates (and x1 = x, x2 = y, x3 = z). Since all the
branches are identical, the indicator function �vb is the same for each branch when referred to the local coor-
dinates, so only one copy of �vb relative to these coordinates is stored. Call this copy �v. To apply the force in
Eq. (16), �vb is calculated by first transforming x into the branch-local coordinates nb of branch b using
nb = [e1,be2,b e3,b]T(x � Ob), and then using these coordinates to calculate �vbðxÞ ¼ �vðnbÞ using the stored copy.
When nb does not fall on a point of the grid used to store �v, trilinear interpolation is used to calculate �vðnbÞ.
However, if x lies within a resolved branch, then �vbðxÞ is set to zero, so the support of fb(x) is disjoint from that
of r(x).

The momentum sink provided by the RNS force also affects the turbulent kinetic energy budget. The body
force (per unit volume) applied by RNS to the flow is given by Eq. (16), where we expect kb > 0. This means
that the RNS force dissipates resolved kinetic energy 1

2
~u � ~u at the spatially-dependent rate

eRNSðxÞ ¼ �fb � ~u ¼ kb�vbðxÞj~uðxÞj3 P 0.
In summary, the RNS procedure consists of writing the distributed force due to the fractal tree according to

Eq. (9), where r(x) is given by the usual immersed boundary method to freeze the velocity at the points inside
resolved trunks and branches. The distributed force fields fb(x) inside unresolved branches are determined
using Eq. (16) with the coefficient kn

b as given by Eq. (18), and with cn
Dðg þ 1Þ ð¼ cn

DðgÞÞ determined from
the basic RNS procedure according to Eq. (15). In Eq. (15), Fn

b is determined from Eq. (13), which in turn
uses the values of cn�1

D obtained from the previous time iteration.
The recursive relation Eq. (15) for cn

DðgÞ is not unique. In the present (explicit) implementation we chose to
iterate in time, so cn�1

D ðgÞ from the previous time-update is used to compute the sub-branch contribution to Fn
b

on the right-hand side of Eq. (15). An alternative (implicit) approach would be to make the dependence of Fn
b

on cn
DðgÞ explicit during the error minimization, which is analogous to the dynamic approach [33,34] often

used in turbulence modeling. Tests have shown that there is no significant difference between the two
approaches in the current application although the proposed iterative method appears to be more stable in
some other applications we have attempted, and so it is maintained here as well.

Generally, a drag coefficient by itself is not useful unless the area and velocity scale upon which it is based
are also specified. Since our cD is defined in terms of the velocity scale based on Rb, it is not directly compa-
rable to drag coefficients based on other velocity scales, e.g., the free stream velocity. In fact, since Rb depends
on r, cD for trees with different r (but the otherwise similar geometry) are not directly comparable. With a
velocity scale based on Rb, cD can be viewed as an internal model parameter that provides a certain amount
of drag to the flow corresponding to the tree. A measure of this drag is CT, which is based on the average
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velocity in the domain and the frontal area of the domain, so that it can be compared directly among different
tree geometries and (with appropriate area conversions) drag coefficients from other studies. Therefore, we
report most results in terms of CT, and place less emphasis on specific values of cD.

4.2. Application

As a basic test of the RNS methodology, it is used to simulate the flow from Section 3. The RNS is per-
formed using a resolution of only 128 · 64 · 64 grid points, resulting in a trunk diameter of 8h, which is just
sufficient to resolve the tree trunk. All other branches are unresolved and modeled using the RNS technique,
i.e., g = 0. To further reduce CPU time, the RNS-determined cD(g = 0) is only updated once every five time
steps. A snapshot of the RNS velocity field, with the RNS-determined force field for the unresolved branches
superimposed, is shown in Fig. 8(a). Note that the force is active only in the regions where branches are
located, and within these regions the force is non-uniformly distributed and smoothed. Mean velocity con-
tours from the RNS are shown in Fig. 8(b). The resistive effect of the RNS-determined force, causing a lower
velocity at position corresponding to the unresolved branches, is apparent.

The IB treatment does capture vortex shedding effects in simulations of flow over an isolated square cylin-
der (see Appendix A), e.g., the Strouhal number estimated from the peak in the lift spectrum gives a reason-
ably accurate answer. In the flow over the trees, some vortex shedding occurs near the lower part of the trunk.
However, tree-scale vortex shedding is not observed due to the presence of the branches on the upper part of
the tree, which tend to break-up large-scale organization of the flow.

The time-history of the RNS-calculated model coefficient cD(0) in Fig. 9 demonstrates that the approach
rapidly converges (in time) to a statistically stable mean value of �cDð0Þ � 3:9. The fluctuations in cD(0) are
a result of the turbulent fluctuations of quantities used in the model, i.e., the resolved force on the trunk
and the velocity scale. Averaging the total force obtained in this simulation yields a global drag coefficient
(which includes the resolved trunk) of CT � 0.44. This is comparable to, but 11% higher than, the infinite gen-
eration estimate CðindÞ

T � 0:39 from Section 2.2. On average, the unresolved force in this simulation makes up
79% of the total force on the tree, which highlights the importance of accurately modeling the unresolved
branches when predicting the total tree drag.

A slight difference with the BRS is that RNS effectively downscales the z0 used on the resolved branches in
parameterization of the unresolved branches, i.e., the ratio z0/l for the last resolved generation branches is
imposed on the unresolved branches. To measure the sensitivity of the RNS approach to the parameter z0

on the trunk surface (originally taken as z0 = 10�4L in the base case), tests with two other values of z0 were
also performed: z0 = 5 · 10�5L and z0 = 2 · 10�4L. These tests showed less than a 1% difference from the base
case in the value of CT.
Fig. 8. Resolved tree geometry, and streamwise velocity-field slices from 128 · 64 · 64 RNS with g = 0: (a) instantaneous streamwise
velocity field (color), with streamwise force field superimposed (grey) and (b) mean streamwise velocity.
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Fig. 9. Time history of the branch drag coefficient cD(g) from the RNS test with g = 0, showing that the procedure produces a statistically
stable value.
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Since the tree height 3L/4 is a large fraction of the domain height L, domain-size effects do influence the
drag on the tree. To test the sensitivity to domain-size, additional RNS simulations using domain heights
3L/2 and 2L were performed. For the 3L/2 and 2L simulations, the values of CT were nearly equal, and about
5% lower than the value obtained using domain height L. As expected, CT decreases when the domain height is
increased to 3L/2 due to the reduced confinement of the flow over the top part of the tree. The negligible dif-
ference observed in changing the domain height from 3L/2 to 2L indicates that further increases in domain
height would have only minor effects. Since the domain height effect is small, the simulations reported below
continue to use domain height L.

We have also performed tests with different streamwise domain and fringe lengths. Simulations using
Lx/L = 2,3,4 with fringe lengths of 12.5% and 25% of Lx show that CT increases slightly with Lx, indicating
that finite domain size does constrain the tree wake to some degree. Effects of the fringe size were found to be
negligible.

4.3. Grid sensitivity tests

To quantify the sensitivity of CT to the numerical resolution, a series of grid-resolution tests are presented.
In the first test, flow over the g = 2 geometry (i.e., a tree trunk with two generations of branches) is simulated
using mesh sizes h64 = L/26, h128 = L/27, and h256 = L/28. In this test, all branches are treated as resolved
branches and no model is used for the unresolved branches, i.e., no RNS is used. In the Smagorinsky model
sij � 1

3
skkdij ¼ �2c2

SD
2jeS jeS ij, the parameter D representing the implicit grid filter width is held fixed at D = h64

as the mesh spacing h is reduced. (The filtered variables ~ui, eS ij, etc., are still calculated assuming an implicit
grid filter, so no explicit filtering operation is introduced even though D 6¼ h.) A uniform inflow condition, with
velocity u = (U1, 0, 0) is used in this test. These grid sensitivity simulations using a laminar inflow can be
thought of as having the trees standing almost entirely in the freestream (the flow develops a small boundary
layer between the time in enters the domain and when it hits the tree). Note that the use of the Smagorinsky
model with laminar inflow conditions may lead to inaccurate predictions of the transitional flow around and
behind the tree, due to the excessive dissipation it provides. In this particular test, however, we are concerned
only with the dependence of the numerical solution on mesh spacing (i.e., verification), and not whether the
equations being solved numerically are a realistic physical description of the system (i.e., validation). The effec-
tive drag coefficients CT for these three simulations are shown in Fig. 10 as a function of mesh spacing (rep-
resented by the dash-dot line with square symbols). It is evident that CT is relatively insensitive to the mesh
resolution. This shows that the resolved geometry in the other simulations presented here is sufficiently
resolved to yield results insensitive to the resolution. The decrease in CT when going from h = h64 to
h = h128 is a consequence of the g = 2 geometry being significantly under-resolved at h = h64, having only
2h resolution for the smallest branches.
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Fig. 10. Convergence tests showing time-averaged effective total drag coefficient CT versus computational mesh spacing. Squares/dash-dot
line: no RNS, trunk plus two branch generations, uniform inflow, D = L/26. Circles/dashed line: RNS with g = 0, uniform inflow, D =
L/26. Solid line: RNS with g = 0 (diamond), g = 1 (up-pointing triangle), g = 2 (down-pointing triangle), turbulent inflow, D = h.
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The second grid-resolution test is similar to the first test, except that RNS is used, and only the trunk is
treated as resolved, i.e., g = 0. The results of the test are also shown in Fig. 10 (as the dashed-line with circle
symbols), and again CT does not show large sensitivity to grid-resolution. This shows a coarse mesh may be
used with RNS, and only minor changes are obtained by performing more finely resolved (and much more
expensive) simulations.

In the final grid resolution test, the tree geometry is refined along with the mesh so the 8h resolution rule is
always satisfied. This test thus also serves as test of the robustness of RNS to different levels of branch resolution.
The simulations use g = 0, g = 1, and g = 2 in simulations with h64, h128, and h256 mesh sizes, respectively. The
grid filter size D is also refined in this series and it is kept equal to the mesh spacing h. For this series, turbulent
inflow conditions are specified from precursor simulations. The results from this series are shown as the solid line
in Fig. 10, with different symbols to indicate the different resolved geometry in each case. The results show that the
RNS with the resolved geometry refinement are also relatively insensitive to the mesh resolution used. Therefore,
predictions made using the RNS approach are self-consistent, since the prediction of the quantity of physical
interest CT does not depend strongly on the level of resolution of the resolved geometry.

The two h64 RNS simulations with g = 0, one using laminar inflow, one using turbulent inflow, result in similar
values of CT. This is in contrast to the drop in drag coefficient observed in isolated square cylinder flow upon
introduction of freestream turbulence. The reason for this is the effect of the turbulence on the vortex shedding
[55]. Since our tree geometry does not exhibit tree-scale vortex shedding (and only shedding around the base of the
trunk), it is plausible the turbulence level does not have a large effect on CT, as shown in our results.

4.4. Predictions

In this section, predictions from several RNS runs performed using a range of tree fractal dimensions,
obtained by varying the scale ratio r and number of sub-branches NB, are presented. Two flow configurations
are considered: developing flow over a single row of trees (as in previous sections, denoted here by ‘‘D’’) and
flow over many rows of trees (i.e., a square lattice with fully developed flow, denoted by ‘‘FD’’). The purpose
is to show the versatility of the RNS approach, in that it can adjust to a variety of flows and tree geometries.
All the RNS in this section use g = 0, so the resolved geometry is identical in all cases.

In the first series of simulations (D-plus), flow over a row of trees with the NB = 3 geometry considered in
the preceding sections is performed, but the scale ratio is varied over the range r = 0.20, 0.25, . . ., 0.50.
Turbulent inflow from a precursor simulation is prescribed at the plane x = �L/2. The resulting CT from this
series are represented in Fig. 11(a) by square symbols, plotted as a function of the tree fractal dimension D.
The increase of CT with D is significant. The second simulation uses (FD-plus) the same tree geometry, but
uses periodic streamwise boundary conditions with no fringe region. The simulation domain is changed to
a cube with edge length L, which corresponds to a square lattice arrangement of trees on the plane z = 0 with



a spacing L between the trees in both the x and y directions. To force the mean flow in the streamwise x direc-
tion, a constant mean pressure gradient force fp is imposed, as described in Section 3.1. The results from this
fully developed series with the NB = 3 trees, are represented by the triangle symbols in Fig. 11(a). The CT val-
ues from FD-plus fall below those from D-plus because the wake of the upstream trees slows the fluid impact-
ing the trunk and low generation branches significantly, resulting is less drag force. A lower drag coefficient is
the expected behavior for fully developed flow.

The third series of simulations (D–Y) consists of developing flow over a row of trees with NB = 2 and the
branches inclined to form a ‘‘Y’’ shape. For this geometry, the IFS is given by Eq. (2) with R0 = Rx(p/4),
R1 = Rx(�p/4), s0 ¼ 0;�d0= 2

ffiffiffi
2
p� �

; l0 � d0ð2�
ffiffiffi
2
p
Þ=4

� �
, and s1 ¼ 0; d0= 2

ffiffiffi
2
p� �

; l0 � d0 2�
ffiffiffi
2
p� �

=4
� �

. The
region Rb used for averaging the velocity, is defined for the trunk as RT = {(x, y, z): �W/4 6 x 6 0,
jyj 6 ymax, zmin 6 z 6 zmax}, with ymax ¼ ðrl0 þ d0=2Þ r þ 1=

ffiffiffi
2
p� �

=ð1� r2Þ, zmax = l 0 + ymax, zmin ¼ l0þ
ðrl0 þ d0=2Þð1� r2Þ=

ffiffiffi
2
p
� r3d0=2� r4zmax and l 0 = l0 � d0/2. In the Y-series, the additional value r = 0.53 is

added to the range of r considered before for the plus series. This series is otherwise identical to D-plus.
The results of this test are represented by the circles in Fig. 11(a). The results from tests D–Y and D-plus show
good collapse over the range of D tested.
Fig. 12. (a) Instantaneous streamwise velocity field, with streamwise component of force field superimposed (grey scale), from coarse (643)
RNS using the Y geometry, periodic boundary conditions on the lateral boundaries, and resolving only the tree trunk. (b) Mean
streamwise velocity.
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The last series is with the Y trees and periodic, fully-developed conditions (FD-Y). Fig. 12(a) shows slices
through an instantaneous streamwise velocity field and RNS force field, and Fig. 12(b) shows slices through
the time-mean streamwise velocity field. Although the velocities should not be compared directly, the relative
intensity of the turbulence in Fig. 12(a), from the FD-series, is larger than that in Fig. 8(a), from the D-series,
because the incoming wake turbulence from upstream trees in the FD-series is more intense than the turbu-
lence developed in the precursor simulation that provides the inflow for the simulations in the D-series. Results
are represented by the diamond symbols in Fig. 11(a), which shows that this series yields lower drag than D–Y
(again, due to the wake of upstream trees), but higher drag than FD-plus. The results from FD-Y and FD-plus
do not exhibit the same collapse that was observed in the D–Y and D-plus cases, and instead show different
dependence on D, with CT values from FD-Y growing faster with D than those from FD-plus.

Finally, the results from this section are re-plotted as a function of scale ratio r in Fig. 11(b). In this plot, CT

has been premultiplied by the asymptotic area ratio 1 � NBr2 to facilitate comparison with the prediction of
Eq. (3). In the g!1 limit, Eq. (3) predicts (1 � NBr2)CT = Csql0d0/L2 � 0.097 for each tree, which means all
of the simulations should fall on the same horizontal line. The results for each case do not fall on horizontal
lines (except perhaps the D-Y case, which however does not fall on the predicted horizontal line), suggesting
that RNS is sensitive to differing strengths of interactions that occur among branches when r and NB are var-
ied. Plotted this way, the CT from the two Y-series are always lower than the corresponding plus-series values
for a given r because there are fewer branches to resist the fluid motion.
5. Conclusions

Turbulent flow over arrangements of idealized fractal trees has been studied via a series of numerical sim-
ulations. High-resolution, branch-resolving LES applied at varying branch numbers show that the dependence
of the drag coefficient on the inner cutoff scale of the fractal is quite strong, at least at low and moderate num-
bers of branch generations. It has also been shown that the speed of convergence to an asymptotic, generation-
independent, drag coefficient is very slow.

To avoid great computational expense associated with directly simulating such multi-scale systems, a new
technique, RNS, has been proposed. By exploiting geometric scale-invariance, it allows for the efficient compu-
tation of fluid interactions with fractal boundaries. The RNS technique makes predictions about the physical
effects of the full range of scales in a system by using information from a limited, but affordable, range of large
scales. The technique has been used to determine the effective drag coefficient over idealized fractal tree geome-
tries, and the resulting predictions have been shown to be reasonable in three ways: they are within bounds set by
expensive branch-resolving LES (i.e., simulations not using the RNS technique), they are self-consistent (insen-
sitive to mesh and tree geometry resolutions), and they are within 11% of an a priori analytical estimate. Finally,
the technique has been applied to study how the drag on fractal trees depends on the scale ratio r between branch
generations. The drag is found to scale roughly with the frontal area of the fractal, but also depends in non-trivial
ways on the detailed tree geometry and flow configuration.

The present results have been obtained by limiting the application to high Re flows, and under the assump-
tion that cD(g) tends to a finite, non-zero limit as Re!1 (i.e., complete similarity). In applications involving
finite Re, this assumption could be weakened to allow for further determination of parameters associated with
possible Re-dependencies. Perhaps considerations of incomplete similarity [56] in cD(Re) as a function of Re

may be useful. Present results lead us to conjecture that many other physical systems displaying fractal geo-
metric character, such as flow in arterial and pulmonary networks, flow through fractal porous media (such as
soils) and turbulent atmospheric flow over fractal mountain ranges, could be modeled accurately using RNS at
affordable computational cost.
Acknowledgements

This work was supported by National Science Foundation, CMG research grant ATM-0222238. Compu-
tational resources were provided by the Scientific Computing Division of the National Center for Atmospheric
Research.



S. Chester et al. / Journal of Computational Physics 225 (2007) 427–448 445
Appendix A. Resolution requirements

Here, the minimum resolution requirements of the immersed-boundary branch treatment described in Sec-
tion 3.1 are summarized. Simulations of an isolated square cylinder with edge length d in a uniform laminar
inflow at Re = 2.2 · 104 were performed. The reason for using a finite Re as opposed to considering Re!1,
as in simulations in the main body of this work, is that this allows direct comparison with experiments. It is
important to note, however, that for bluff body shapes with sharp corners that fix the separation points
(including the square cylinders throughout this study), the Re effects are small. This was shown experimentally
for square cylinders in [54] (and this data have been quoted in more recent texts, such as [57]), which showed
that the drag coefficient is Re-independent to a good approximation when Re > 2 · 104, as long as the flow
may still be considered incompressible. From this, we conclude that the gross flow features must be approx-
imately independent of Re in this Re range. Therefore, the resolution requirements for Re > 2 · 104 (i.e., for
the simulations in the main body of this work) are roughly the same as those for Re 	 2 · 104, at least for the
purpose of measuring the drag.

The dimensions of the flow domain were Lx = 32d, Ly = 16d, Lz = 4d, and a fringe region of length 4d was
used. The roughness length of the cylinder was prescribed as z0 = 10�4Lz = 4 · 10�4d. Three regular Cartesian
grids with equal grid spacing in each direction were used. The coarsest mesh consisted of
Nx · Ny · Nz = 128 · 64 · 16 grid points, resulting in d/h = 4, where h is the grid spacing. The mid-resolution
mesh had Nx · Ny · Nz = 192 · 96 · 24 grid points, and d/h = 6. The finest mesh presented here had
Nx · Ny · Nz = 256 · 128 · 32 grid points, and d/h = 8. The uniform inflow U1 was parallel to the x-axis,
and the cylinder axis was parallel to the z-axis. Impenetrable, stress-free boundaries were imposed at z-bound-
aries and periodic boundary conditions were imposed at y-boundaries. The cylinder was centered 5d down-
stream of the inflow plane. The mean drag coefficient CD for the d/h = 4 grid was CD ¼ 2:80, while it was
CD ¼ 2:58 for the d/h = 6 grid. These values are significantly larger than the experimental values (see Table
1). Results obtained using d/h = 8 are closer to experimental values and are summarized in Table 1 in terms
of the mean drag coefficient CD, the r.m.s. drag coefficient fluctuations C0D, the r.m.s. lift coefficient fluctua-
tions C0L, the Strouhal number St, and the normalized distance from cylinder center to the end of the recircu-
lation region behind the cylinder xr/d. Results from experimental investigations with nearly laminar inflow are
also shown in Table 1 for comparison. In [39], Re = 2.1 · 104 is used, while in [55] Re = 1.76 · 105 is used.
However, the quantities reported are known [58,59] to be insensitive to Re for Re > 2 · 104. The overall agree-
ment between the present LES and experiments is good, but the largest discrepancy is in C0L, which is known to
be sensitive to the turbulence level of the inflow. Indeed, the simulation value of C0L ¼ 0:89 does fall within the
range 0.59–1.23 reported in [55] corresponding to a range of inflow turbulence intensities. See [60,61,49] for
other LES studies of flow over a square cylinder. Note that the corners of the square cross-section essentially
fix the flow separation points, allowing the use of a low number of grid points in the boundary layer around
the cylinder. For smooth cross-section shapes, e.g., circles, higher resolution is required to accurately predict
the separation points and hence the drag. In light of the results in Table 1, we conclude that forces on the
cylinder are predicted with reasonable accuracy when d/h = 8.

A difference between the experiments and the simulations presented here is that the experimental cylinders
have smooth surfaces, while the roughness length in the simulations is z0 = 4 · 10�4d. To verify that the results
are insensitive to z0 (since form drag and not skin friction dominates the drag), simulations using two other
values of z0 were performed, and the drag coefficient statistics were compared. The resolution was d/h = 8 for
these tests. Starting with an initial condition from a simulation with z0 = 4 · 10�4 d, simulations with the
two additional values z0 = 2 · 10�4d and z0 = 8 · 10�4d were performed during a non-dimensional time
Table 1
Comparison of simulation and experiments for isolated square-cylinder flow

Source CD C0D C0L St xr/d

Present LES 2.23 0.23 0.89 0.140 1.33
Ref. [39] 2.1 – – 0.132 1.4
Reference [55] 2.05 0.23 1.23 0.122 –
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tU1/d = 80. Averaging only over the last half of this time interval, the mean drag coefficient using
z0 = 2 · 10�4 differed from the base value by 1.3% (the base value being that obtained using z0 = 4 · 10�4),
while the drag coefficient obtained using z0 = 8 · 10�4 differed from the base value by 1.7%. Thus, as expected,
the mean drag shows very weak dependence on z0.

Appendix B. Model velocity scale

In this appendix, four definitions of the region Rb used to obtain the velocity scale Vb corresponding to
branch b and its descendants are compared. The consistency of the scale-invariance assumption of the model
parameter cD(g) is shown to depend significantly on the choice of Rb.

The first three choices of Rb for any generation-g + 1 branch b ¼ wbgþ1
� � � � � wb1

ðT Þ can be obtained from
the region RT corresponding to the trunk by Rb ¼ wbgþ1

� � � � � wb1
ðRT Þ. These choices are illustrated in Fig. 13.

The first choice of Rb is a large bounding box chosen around b that is guaranteed to contain b and its descen-
dants, independent of how the branches are oriented. Such a box corresponding to the trunk is RT = {(x, y, z):
jxj 6W/2, jyj 6W/2, 0 6 z 6 H}, with W = d0 + 2rl0/(1 � r), H = l0/(1 � r). The second choice of Rb is the
upstream part of the bounding box in the first choice. In terms of RT, this is RT = {(x, y, z): �W/
2 6 x 6 0,jyj 6W/2, 0 6 z 6 H}. The third choice is the upstream diamond shape already described in Section
4.1. The final choice is the same for all the branches: it is simply the entire simulation domain.

These four velocity scales are tested at three tree geometry resolutions g = 0, 1, 2, with mesh spacings
h = L/26, L/27, L/28, respectively. The SGS model filter width D = h is used in each test. The inflow conditions
are a uniform inflow with velocity u = (U1, 0, 0). The ratio �cDðgÞ=�cDð0Þ (with the overbar denoting a time
average) is shown in Fig. 14, to emphasize the scale-dependence of results obtained in each case. The bounding
box velocity scales (the first two choices) show significant scale dependence, which indicates RNS with these
velocity scales is not self-consistent. In contrast, the diamond velocity scale shows little scale dependence, indi-
cating self-consistency when used in RNS with the present geometry. Finally, the domain-mean velocity scale,
although yielding less scale-dependence than the bounding box choices, shows more scale dependence than the
diamond scale. Since it exhibits the least scale dependence, as well as the desirable property of locality (which
may be essential in more complex flow configurations), the diamond velocity scale is chosen for the present
RNS application.

From these tests, we draw the following heuristic rules to help to define Rb. First, Rb should be chosen
upstream of b (relative to the mean flow), in an attempt to separate cause and effect. Second, Rb should
not contain large volumes of fluid that will not come in contact with b and its descendants. A guideline that
helps enforce this second rule is to choose the boundary of Rb to pass through the branch tips of the gener-
ation-1 branches. Of course, an additional constraint is that Rb be a relatively simple shape, for implemen-
tation purposes.
βββ β

Flow

a b

Fig. 13. Boxes used to define velocity scale Vb around branch b and its descendants. (a) bounding box, (b) upstream half bounding box.
The third case using the upstream diamond box was already shown in Fig. 7. The fourth case consists of the entire computational volume,
i.e., Vb is the overall mean velocity in the domain.
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Fig. 14. Ratio of time-mean model coefficient using g-generation geometry �cDðgÞ to its g = 0 value, as a function of g. Long dashed line/
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